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Indications of nonlinear structures in brain electrical activity

Temujin Gautama,* Danilo P. Mandic,† and Marc M. Van Hulle‡
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The dynamical properties of electroencephalogram~EEG! segments have recently been analyzed by Andrze-
jak and co-workers for different recording regions and for different brain states, using the nonlinear prediction
error and an estimate of the correlation dimension. In this paper, we further investigate the nonlinear properties
of the EEG signals using two established nonlinear analysis methods, and introduce a ‘‘delay vector variance’’
~DVV ! method for better characterizing a time series. The proposed DVV method is shown to enable a
comprehensive characterization of the time series, allowing for a much improved classification of signal
modes. This way, the analysis of Andrzejak and co-workers can be extended toward classification of different
brain states. The obtained results comply with those described by Andrzejaket al., and provide complementary
indications of nonlinearity in the signals.
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I. INTRODUCTION

In many applications of signal analysis, it is useful
verify the existence of an underlying nonlinear process,
that appropriate modeling or filtering techniques can be
lected. In the field of biomedical signal processing, e.g.,
analysis of heart rate variability, electrocardiogram, ha
tremor, and electroencephalogram, the presence or abs
of nonlinearity often conveys information concerning t
health condition of a subject~for an overview, see Ref.@1#!.

In particular, the electroencephalogram~EEG! signals are
often examined using nonlinearity analysis techniques,
such, or by comparing signals that are recorded during
ferent physiological brain states~e.g., during an epileptic sei
zure!. The problem, however, as stated in Ref.@2#, is that
different analysis results can be either due to a genuine
ference in dynamical properties of the brain, or due to d
ferences in recording parameters. Recently, Andrzejaket al.
have analyzed five sets comprising 100 EEG segments e
recorded extracranially in healthy subjects with eyes o
and closed, and intracranially in epilepsy patients both d
ing seizure-free intervals and epileptic seizures@2#. They
have found the strongest indication of nonlinear determin
tic dynamics for seizure activity, and no significant indic
tion of nonlinearity for healthy subjects with eyes closed,
examining the predictability and the correlation dimension
the time series. Many methods exist for characterizing a t
series, but, probably due to the strong interest in chaos,
applications have been typically concerned with detecting
analyzing nonlinear properties in a time series@3#, but less
with a characterization over different scales that remains
variant over multiple realizations of the underlying system

To this cause, we propose a characterization method
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‘‘delay vector variance’’~DVV ! method, which we first use
for performing a nonlinearity analysis, the aim of which is
verify whether or not a time series is generated by a lin
stochastic system. The proposed method yields a stand
ized characterization of a time series that examines the l
predictability over different scales. The method is applied
the five sets of EEG segments@2#, and the obtained result
are confirmed by those of two other, established metho
Due to the nature of the proposed method, the DVV meth
yields a reliable characterization of the EEG signals, wh
allows for an extension of the analysis described in Ref.@2#
toward an accurate classification of different brain states

II. METHODS

After a brief summary of the EEG data, we describe t
basis of the statistical framework of the analysis~surrogate
data!. Next, two established nonlinearity analysis metho
the third-order autocorrelation function, and the asymme
due to time reversal, are briefly addressed, and the prop
method is introduced.

A. Data

We have used the data described in Ref.@2#, which is
publicly available@13#. Therefore, we restrict ourselves t
only a short description and refer to Ref.@2# for further de-
tails.

The complete dataset consists of five sets~denotedA–E),
each containing 100 single-channel EEG segments of 23
Each segment has been selected after visual inspection
artifacts and has passed a weak stationarity criterion. SeA
andB have been taken from surface EEG recordings of fi
healthy volunteers with eyes open and closed, respectiv
Segments in two sets have been measured in seizure
intervals from five patients in the epileptogenic zone~D! and
from the hippocampal formation of the opposite hemisph
of the brain (C). Set E contains seizure activity, selecte
from all recording sites exhibiting ictal activity. SetsA andB
have been recorded extracranially, whereas setsC, D, andE
have been recorded intracranially. Apart from the differe
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recording electrodes, the recording parameters were fi
For this reason, different analysis results can be attribute
different dynamical properties of the brain.

B. Surrogate time series

Similar to the approach employed by Andrzejaket al. @2#,
the surrogate data method is used for assessing the no
earity present in the time series. A surrogate time series
‘‘surrogate’’ for short, is a realization of a ‘‘composite’’ nul
hypothesis, in our case that the original time series is ge
ated by a Gaussian linear and stationary process, meas
by a memoryless, monotonic and possibly nonlinear ob
vation function~for an overview, see Ref.@3#!. As suggested
by Theiler and Prichard@4#, metrics can be used for chara
terizing the original signal which can be compared to tho
obtained for an ensemble of surrogate time series usin
nonparametric rank-based test. The hypothesis tests in
paper are performed at the level ofa50.02. For a set of
EEG segments, the number of time series in a set for wh
the null hypothesis is rejected is referred to as the ‘‘reject
rate.’’

For every original time series, the surrogates are ge
ated using the iterative amplitude adjusted Fourier transf
~iAAFT ! method described by Schreiber and Schmitz@3#.
The iAAFT generated surrogates have their amplitude sp
tra similar, and their amplitude distributions identical to th
of the original time series. Using a significance level ofa
50.02, the null hypothesis for a right-tailed test with 4
surrogates is rejected if the rank of the original test statisti
equal to 50, and for a two-tailed test with 99 surrogates if
rank is equal to 1 or equal to 100.

C. Nonlinearity measures

In the following analysis, the delay vector varian
method is compared to two other, established measure
nonlinearity, which have also been used in Ref.@5#, namely,
the third-order autocovariance~C3! and the asymmetry du
to time reversal~REV!. The third-order autocovariance is
higher-order extension of the traditional autocovariance
is given by

tC3~t!5^xkxk2txk22t&, ~1!

wheret is a time lag. A time series is said to be reversible
its probabilistic properties are invariant with respect to tim
reversal. A possible measure for the asymmetry due to t
reversal is

tREV~t!5^~xk2xk2t!
3&. ~2!

It has been shown in Ref.@5# that, in combination with the
surrogate data method, these two measures yield reli
two-tailed tests for nonlinearity. For convenient comparis
to the results described in Ref.@2#, the time lagt is set to
unity @14# in all simulations for both test statistics.

D. Proposed method: Delay vector variance method

Although established methods in the field of nonlinear
analysis exist, such as the two methods described in the
04620
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ceding section, there is a need for a robust method whic
straightforward to interpret and visualize. To be able to p
form reasonably well on a wide variety of signals, it is d
sirable that such a method makes use of some w
established notions from nonlinear dynamics and chaos, s
as the embedding dimension and geometry in phase sp
The existing methods are often complex and specific, e
the deterministic versus stochastic~DVS! plots @6#, and the
correlation dimension@7,8#.

Therefore, we propose an analysis of a time series wh
examines the predictability of a time series in phase spac
different scales, using the method of time delay embedd
for representing a time series: for a given embedding dim
sion m, a set of delay vectors ~DVs!, x(k)
5@xk2mt , . . . ,xk2t#, is generated, wheret is a time lag
which for convenience is set to unity in all simulations. Th
choice oft is a conservative one in the context of nonlinea
ity detection. Indeed, assuming the embedding dimensio
sufficiently high~as can be expected in our case, since it w
determined using Cao’s method!, a linear time series can b
accurately represented usingt51, whereas this is not the
case for a nonlinear signal, for which the time lag plays
important role in its characterization. Therefore, if the n
hypothesis of linearity is rejected, one can safely assume
the time series is nonlinear~since the linear part was accu
rately described fort51, and the rejection can be attribute
to the nonlinear part of the signal!. Conversely, if the null
hypothesis is found to hold, this can be due to the fact t
either the signal is genuinely linear, or that the signal is n
linear and that the phase space was poorly reconstructed
ing t51.

Every DV x(k) has a correspondingtarget, namely, the
next sample,xk . The proposed approach is somewhat rela
to thed-e method@9# and the deterministic versus stochas
plots @6#, both of which are local prediction techniques, a
the correlation sum@7# which characterizes reconstructed a
tractors over different distance scales in phase space.
latter has also been used for comparing time delay embed
time series@10#.

For a given embedding dimensionm, the proposed
method computes the mean target variances* 2 over all sets
Vk . A set Vk is generated by grouping those DVs that a
within a certain distance tox(k), which is varied in a manne
standardized with respect to the distribution of pairwise d
tances between DVs. This way, the threshold scales a
matically with the embedding dimensionm, as well as with
the dynamical range of the time series at hand, and thus
complete range of pairwise distances is examined. The
posed delay vector variance method can be summarize
follows.

~a! For a given embedding dimensionm: The meanmd
and standard deviationsd are computed over all pairwis
Euclidean distances between DVs,ix( i )2x( j )i ( iÞ j ).

~b! For a given embedding dimensionm: The setsVk(r d)
are generated such thatVk(r d)5$x( i )u ix(k)2x( i )i<r d%,
i.e., sets which consist of all DVs that lie closer tox(k) than
a certain distancer d , taken from the interval@max$0,md
2ndsd%;md1ndsd#, e.g., uniformly spaced, wherend is a
4-2
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parameter controlling the span over which to perform
DVV analysis.

~c! For a given embedding dimensionm: For every set
Vk(r d), the variance of the corresponding targets,sk

2(r d), is
computed. The average over all setsVk(r d), normalized by
the variance of the time series,sx

2 , yields the measure o
unpredictabilitys* 2(r d),

s* 2~r d!5

1

N (
k51

N

sk
2~r d!

sx
2

. ~3!

We only consider a variance measurement to bevalid, if the
setVk(r d) contains at least 30 DVs.

As a result of the standardization of the distance axis,
resulting DVV plots are straightforward to interpret. Th
presence of a strong deterministic component will lead
small target variances for small spans. At the extreme ri
the DVV plots smoothly converge to unity, since for max
mum spans, all DVs belong to the same set, and the varia
of the targets is equal to the variance of the time series
this is not the case, the span parameternd should be in-
creased. Thus, visual inspection of the convergence o
DVV plot to unity at the extreme right should be used f
setting this parameter~we typically start fromnd52 and
increase it using unit steps until the DVV plots converge
unity at the extreme right!. Note that the DVV plot yields a
characterization of the time series at different scales and g
beyond an estimate of the deterministic or stochastic com
nent. In all simulations, the parameternd was set to four, and
the interval @md2ndsd ;md1ndsd# was divided into 100
equidistantr d values.

In the following step, the linear or nonlinear nature of t
time series is examined by performing DVV analyses w
identical parameters for both the original and a number
surrogate time series. Due to the standardization of the
tance axis, these plots can be conveniently compared u
the test statistictDVV, namely, the root mean square err
~RMSE! between thes* 2’s of the original time series and
thes* 2’s averaged over the DVV plots of the surrogate tim
series~note that when computing this average, as well
when computing the RMSE, only the valid measurements
taken into account!:

tDVV5AK S s* 2~r d!2

(
i 51

Ns

ss,i* 2~r d!

Ns

D 2L
valid r d

,

~4!

wheress,i* 2(r d) is the target variance at spanr d for the i th
surrogate, and the average is taken over all spansr d that are
valid in all surrogate and original DVV plots. In this way,
single test statistic is obtained, and traditional~right-tailed!
surrogate testing can be performed~the RMSE to the averag
is computed for the original, and surrogate time series!.
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III. RESULTS

In the simulations, we aim at extending the nonlinear
detection results described in Ref.@2# to a classification of
the EEG segments. To that cause, first the results for
individual nonlinearity analyses are presented. Subseque
the test statistics for the three methods~C3, REV, and DVV!
are used for classification purposes.

A. Nonlinearity analysis

To compare our methodology to that adopted by Andr
jak and co-workers@2#, we have performed nonlinearit
analyses on each of the 500 EEG segments. For several
series in the five sets, the minimum embedding dimensi
have been determined using Cao’s method@11#, yielding m
510. In all DVV analyses, the embedding dimension is
to m510 andnd54. The rejection rate, that is, the numb
of time series for which the composite null hypothesis
linearity has been rejected, is shown in Table I. It can
clearly seen that setE has a higher rejection rate than th
other sets. Note that the probability of havingnrej or less time
series rejected at the level ofa50.02 by pure chance in a se
of 100 time series, is 1.8931024 for nrej58 @2#. Thus, all
setsA–E show significant indications of nonlinearity for a
methods~C3, REV, and DVV!.

Figure 1 shows the average DVV plots for the differe
sets. It can be clearly seen that setsA and B, andC and D

TABLE I. Number of time series for which the null hypothes
of linearity is rejected~rejection rate! at the level ofa50.02 for the
different sets. For comparison, the rejection rates described in
@2#, obtained at the level ofa50.025 are also included~denoted by
P and D2,e f f , see discussion section!. The last column gives the
rejection rates using the minimal target variance (smin*2 , see Sec.
IV !.

Set C3 REV DVV P D2,e f f smin*2

A 8 15 29 4 0 4
B 8 37 32 9 0 8
C 20 23 46 14 7 5
D 20 41 53 37 27 18
E 65 86 92 89 27 70

FIG. 1. Average DVV plots for the five sets of time series:A
~thick solid!, B ~thick dashed!, C ~thin solid!, D ~thin dashed!, andE
~dotted!.
4-3



ds
he
in
n

ds
im
or
ie

s
to

tw
ca

th

V
ta
rs
se

ss

s
.

rs
of

nd
t

fra
fo
th
v

tiv
t

the
unt
m-
her-
ted

all
f the
cu-
hod

r-

te

-
ery
rity
e of

ear
to

als.
ility
d in
to
d.
the
re,

n-

as

or

vity

VV
of

ent
ial
ree

and

nt

GAUTAMA, MANDIC, AND VAN HULLE PHYSICAL REVIEW E 67, 046204 ~2003!
yield similar DVV plots. As already described in the metho
section, by design, all DVV plots converge to unity at t
right hand side of the standardized distance axis. The m
mal target variance for the DVV plots, which is an indicatio
of the predictability of the time series, is lower for setsC, D,
and E ~epilepsy patients!, than for setsA and B ~healthy
subjects!.

B. Classification

In this section, the applicability of the various metho
are examined with respect to the characterization of the t
series. We examine whether or not these methods allow f
classification of the time series into the different categor
Every time series has a desired label, namely, that of the
from which it is taken, and the objective of the classifier is
correctly label each of the 500 time series. We consider
cases: the five-class case and the simplified three-class
which groups classesA and B, and classesC and D. Every
time series is characterized by a feature vector on which
classification is performed. For the first two methods~REV
and C3!, this is simply the test statistic, but for the DV
method, the vector containing the target variances for cer
standardized distances is used. We limit the feature vecto
those standardized distances for which all DVV analy
yield valid target variances.

Although there exist many methods for supervized cla
fication ~the desired labels are knowna priori!, we restrict
our analysis to two methods, which can be interpreted a
lower and upper bound of possible classification systems

Nearest neighbor classification (NNC). The class proto-
types are determined as the average of the feature vecto
all time series belonging to a certain set. The class label
time series is determined as that of the prototype which
nearest to its feature vector (L2 norm!.

Leave-one-out classification (LOOC). The label of a time
seriesi is determined by leaving out this time series, a
considering the remaining set of feature vectors as the se
labeled prototypes. The label of time seriesi is set equal to
that of the nearest prototype.

The classification performances are expressed as the
tion of correct classifications, and are shown in Table II
the different setups, denoted by NNC5 and LOOC5 for
nearest neighbor and leave-one-out classification of the fi
class case, and by NNC3 and LOOC3 for the respec
three-class case. The classification performances for
DVV method ~third row! outperform those for REV~first
row! and C3~second row! for all setups.

TABLE II. The classification performances for the differe
methods and setups, expressed as a percentage.

Method NNC5 LOOC5 NNC3 LOOC3

C3 20.6 26.2 31.6 42.2
REV 30.2 35.4 42.2 51.8
DVV 47.2 60.8 74.4 86.2
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IV. DISCUSSION

We have introduced a methodology for characterizing
nature of a time series. The DVV method takes into acco
different properties of a time series, namely, time delay e
bedding, phase space geometry, and predictability. Furt
more, it has been shown that the feature vector extrac
from the DVV analysis, using identical parameters for
time series, enables a comprehensive characterization o
dynamical modes of the EEG signals, allowing for an ac
rate classification of the brain states. The proposed met
has been applied to the problem addressed in Ref.@2#, which
is a subject of much on-going research.

Andrzejaket al. @2# examined the nonlinear prediction e
ror P in the phase space~embedding dimensionm56), at a
prediction horizon ofH565 sampling times, and an estima
of the effective correlation dimensionD2,e f f . They report an
overall lower rejection rate than our findings~for compari-
son, the rejection rates obtained in Ref.@2# are included in
Table I, labeledP and D2,e f f). This could be due to a re
stricted characterization of the time series, which is a v
common issue in nonlinearity analysis. Indeed, nonlinea
and determinism are often confounded, as the presenc
both is necessary for the existence of deterministic chaos~for
a more detailed discussion, see Refs.@3,12#!. Thus, when
characterizing a time series on the basis of the nonlin
prediction error, only the deterministic structure is taken in
account, which is not a property unique to nonlinear sign
Thus, the linear surrogates can have the same predictab
as their nonlinear counterparts. Furthermore, as explaine
Ref. @2#, a difference in rejection rates can be attributed
either a higher sensitivity or a lower specificity of a metho

For comparison, we have examined the time series in
five EEG sets with respect to their deterministic structu
using the lowest target variance in the DVV plot,smin*2 ,
which corresponds to the mean square error~MSE! for the
best performing local linear model, for an embedding dime
sion of m510. As is the case forP, the rejection rates are
considerably lower than those for REV, C3, and DVV,
shown in Table I~last column!.

On the set level, Andrzejaket al. tentatively ranked the
time series in decreasing order of the values ofP, averaged
over each of the five EEG sets, resulting inA.C.B.D
.E. Similarly, we rank the DVV test statistics obtained f
the DVV in increasing order and obtain:B(0.0114)
,A(0.0115),C(0.0123),D(0.0178),E(0.0450). It can
be observed clearly that in both analyses, the EEG acti
during seizure-free intervals in the epileptogenic zone (D),
and the EEG activity during a seizure~E! show more evi-
dence for an underlying nonlinear process~DVV ! and deter-
minism ~nonlinear prediction error, see Ref.@2#! than the
other sets.

As shown by the classification results, the proposed D
method provides a sufficiently detailed characterization
the EEG time series to distinguish between the differ
classes~surface recordings of healthy volunteers, intracran
EEG recordings of epilepsy patients from the seizure-f
intervals, and from epileptic seizure activity!. The perfor-
mance of a classifier is expected to lie between 74.4%
4-4
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86.2%, as shown by our analyses. However, performa
degrades for a more detailed classification which further
sociates between setsA ~healthy volunteer, eyes open! andB
~healthy volunteer, eyes closed!, and setsD ~epileptogenic
zone! and C ~hippocampal formation of opposite hem
sphere!. Therefore, we conclude that the proposed DV
characterization although not requiring any prior knowled
about a signal in hand is very robust, and exhibits improv
performance over other available methods for a relativ
crude clustering of multimodal signals into the basic class
For a classification within the established classes, howe
the DVV characterization as such is not detailed enough,
should be combined with additional measures, which are
based upon the geometry and predictability in phase spa

Overall, our results agree well with those obtained
Andrzejaket al. @2#, with the exception that they found n
~significant! indications of nonlinearity in the EEG segmen
recorded extracranially during the relaxed state of hea
id
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subjects with eyes closed. The proposed DVV meth
clearly distinguishes between EEG segments recorded
healthy subjects, in epilepsy patients during a seizure-
interval, and during an epileptic seizure, indicating differe
dynamical properties of brain electrical activity.
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